
7.8  Improper Integrals 
 

In this section we will deal with the idea of definite integrals where the interval is infinite and also where 

the function f  has an infinite  discontinuity in [a, b].  In each case the integral is called an improper 

integral. 

 

Infinite Integrals: 

 

Consider the integral: 

∫
1

𝑥2
𝑑𝑥  𝑓𝑜𝑟  𝑏 > 1

𝑏

1

 

 

Notice that this integral give the area of the region bounded by the curves 𝑦 =  
1

𝑥2 and the x – axis 

between x = 1 and x = b.  Thus 

∫
1

𝑥2
𝑑𝑥 =  ∫ 𝑥−2𝑑𝑥 =  −

1

𝑥
|
1

𝑏
𝑏

1

𝑏

1

= 𝟏 −
𝟏

𝒃
 

 

If we increase b, the area under the curve also increases.  But what happens to the area as b becomes 

arbitrarily large?  In other words, 𝑏 → ∞. 

lim
𝑏→∞

(1 −
1

𝑏
) = 𝟏 

This says that a curve of infinite length that bounds a region has a finite area!  Therefore we can say, 

∫
1

𝑥2
𝑑𝑥 = 1

∞

1

 

This is an improper integral because ∞ appears in the upper limit. 

 

To evaluate ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
, we first integrate over a finite interval [a, b] and then take the limit as 𝑏 → ∞. 

 

Similar procedures are used to evaluate ∫ 𝑓(𝑥)𝑑𝑥  𝑎𝑛𝑑  ∫ 𝑓(𝑥)𝑑𝑥.
∞

−∞

𝑏

−∞
 

 

 

 



Definition of an Improper Integral of Type 1: 

1.  If f  is continuous on [a, ∞), then       ∫ 𝑓(𝑥)𝑑𝑥 = lim𝑏→∞ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

∞

𝑎
     

 

 

 

 

 

 

 

2.  If f  is continuous on (- ∞, b], then  ∫ 𝑓(𝑥)𝑑𝑥 =  lim𝑎→−∞ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
 

 

 

 

 

 

 

 

 

3.    If f  is continuous on (- ∞, ∞), then 

       ∫ 𝑓(𝑥)𝑑𝑥 =  lim𝑎→−∞ ∫ 𝑓(𝑥)𝑑𝑥 + lim𝑏→∞ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐

𝑐

𝑎

∞

−∞
  

       where c is any real number.       

 

 

 

 

 

If the limit in cases 1 – 3 exist, then the improper integral converges: otherwise they diverge. 

 

Example:  Evaluate each integral. 

a)  ∫ 𝑒−3𝑥∞

0
𝑑𝑥      

 

a)  ∫ 𝑒−3𝑥𝑑𝑥
∞

0
=  lim𝑏→∞ ∫ 𝑒−3𝑥𝑑𝑥 =   lim𝑏→∞ [−

1

3
𝑒−3𝑥]

0

𝑏

 =   lim𝑏→∞ −
1

3
(𝑒−3𝑏 − 𝑒0)

𝑏

0
 

      = lim𝑏→∞
1

3
(1 − 𝑒−3𝑏) =  

1

3
(1 −  lim  𝑒−3𝑏

𝑏→∞
)  =   

1

3
(1 − 0)  =   

𝟏

𝟑
  

 

b) ∫
1

1+𝑥2

∞

−∞
 

 

b)  ∫
1

1+𝑥2 𝑑𝑥 =  lim𝑎→−∞ ∫
1

1+𝑥2 𝑑𝑥 + lim
𝑏→∞

∫
1

1+𝑥2 𝑑𝑥
𝑏

𝑐

𝑐

𝑎

∞

−∞
  (since c can be any real number, we choose c = 0.) 

       = lim𝑎→−∞tan−1 𝑥|
𝑎

0
 +   lim tan−1 𝑥

𝑏→∞
|

0

𝑏

 = lim𝑎→∞[tan−1 0 − tan−1 𝑎] + lim𝑏→∞[tan−1 0 − tan−1 𝑏] 

       = lim𝑎→∞[0 − tan−1 𝑎] + lim𝑏→∞[0 − tan−1 𝑏]  =   lim
𝑎→∞

[tan−1 𝑎] + lim
𝑏→∞

[tan−1 𝑏] =  
𝜋

2
+

𝜋

2
= 𝝅 

 

 

 



 

∫
𝟏

𝒙𝒑
𝒅𝒙  𝑖𝑠 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒕 𝑖𝑓 𝑝 > 1 𝑎𝑛𝑑 𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒏𝒕 𝑖𝑓 𝑝 ≤ 1

∞

𝟏

 

 

Discontinuous Integrands: 

 

Definition of Improper Integral of Type 2: 

 

1.  If f  is continuous on [a, b) and is discontinuous at b,  

  

Then  ∫ 𝑓(𝑥)𝑑𝑥 = lim𝑡→𝑏− ∫ 𝑓(𝑥)𝑑𝑥
𝑡

𝑎

𝑏

𝑎
  (if this limit exists as 

           a finite number) 

            

 

 

 

 

2. If f  is continuous on (a, b] and is discontinuous at a,    

 

Then  ∫ 𝑓(𝑥)𝑑𝑥 = lim𝑡→𝑎+ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑡

𝑏

𝑎
 (if this limit exists as 

           a finite number) 

 

 

 

 

 For parts 1. and 2. the improper integral is called convergent  if the corresponding limit exists and 

divergent  if the limit does not exist. 

 

3.  If f  is continuous on [a, b] except at c, where a < c < b, and both ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
 and ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐
 are 

convergent  (in others words the limits of the integrals exisit).  

 

Then  ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
+ 

𝑏

𝑎 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐
 

 

 

 

 

    

 

 

 



If the limits in cases 1 – 2 exist, then the improper integral converges; otherwise, they diverge. 

 

Example:  

a)  Evaluate  

∫
𝑑𝑥

(𝑥 − 2)
1
3

10

1

 

Plot the function and you’ll see the following: 

The integrand is unbounded at x = 2, which appears to be an interior point of the interval of integration.  

We split the interval into two subintervals and evaluate an improper integral on each subinterval. 

 

 
 

∫
𝑑𝑥

(𝑥 − 2)
1
3

10

1

=  lim
𝑐→2−

∫
𝑑𝑥

(𝑥 − 2)
1
3

+ lim
𝑑→2+

∫
𝑑𝑥

(𝑥 − 2)
1
3

10

𝑑

𝑐

1

 

= lim
𝑐→2−

3

2
(𝑥 − 2)

2
3|

1

𝑐

+ lim
𝑑→2+

3

2
(𝑥 − 2)

2
3|

𝑑

10

 

=
3

2
( lim

𝑐→2−
[(𝑐 − 2)

2
3 − (1 − 2)

2
3]) +

3

2
( lim

𝑑→2+
[(10 − 2)

2
3 − (𝑑 − 2)

2
3]) 

=
3

2
(0 − (−1)

2
3) +

3

2
((8)

2
3 − 0) 

= −
3

2
+

3

2
(4) =   

𝟗

𝟐
 

 

b)  Evaluate 

∫
1

√9 − 𝑥2
𝑑𝑥

3

−3

 

Plot the function.   

 

∫
1

√9 − 𝑥2
𝑑𝑥 =  2

3

−3

∫
1

√9 − 𝑥2
𝑑𝑥

3

0

 

The integrand is even and has vertical asymptotes at x = ±3.  

Therefore, 



Because the improper integral is unbounded at  x = 3 we replace the upper limit with c. 

2 ∫
1

√9 − 𝑥2
𝑑𝑥 = 2 lim

𝑐→3−
∫

1

√9 − 𝑥2

𝑐

0

3

0

 =   2 lim
𝑐→3−

(sin−1 (
𝑥

3
))|

0

𝑐

 

= 2 lim
𝑐→3−

(sin−1 (
𝑐

3
) − sin−1(0)) = 2 (

𝜋

2
) = 𝝅 

 

A comparison test for Improper Integrals: 

 

Sometimes it is impossible to find the exact value of an improper integral and yet it is important to know 

whether it is convergent or divergent.  In such cases the following theorem is useful. 

 

Comparison Theorem: 

Suppose that f  and g  are continuous functions with 𝒇(𝒙) ≥ 𝒈(𝒙) ≥ 𝟎  𝒇𝒐𝒓 𝒙 ≥ 𝒂. 

a)  If ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 is convergent, then ∫ 𝑔(𝑥)𝑑𝑥

∞

𝑎
 is convergent. 

b)  If ∫ 𝑔(𝑥)𝑑𝑥
∞

𝑎
 is divergent, then ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑎
 is divergent. 

 

Example:   Determine if the following integral diverges or converges. 

∫
1

𝑥 + 𝑒𝑥
𝑑𝑥

∞

3

 

Note that   
1

𝑥+𝑒𝑥 <
1

𝑒𝑥   So if    ∫
1

𝑒𝑥 𝑑𝑥  𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒔  𝒕𝒉𝒆𝒏
∞

3
  ∫

1

𝑥+𝑒𝑥 𝑑𝑥 𝒘𝒊𝒍𝒍 𝒂𝒍𝒔𝒐 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆
∞

3
. 

Find: 

∫
1

𝑒𝑥
𝑑𝑥 = lim

𝑏→∞
∫ 𝑒−𝑥𝑑𝑥

𝑏

3

∞

3

=  lim
𝑏→∞

−𝑒−𝑥|
3

𝑏

 =   lim
𝑏→∞

(−𝑒−𝑏 + 𝑒−3) =  𝒆−𝟑 

Since the limit exists, then ∫
𝟏

𝒆𝒙 𝒅𝒙
∞

𝟑
 converges.  Using the comparison theorem,  ∫

𝟏

𝒙+𝒆𝒙 𝒅𝒙
∞

𝟑
 also 

converges. 

 

 


